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1. Introduction

The transverse vibrations of axially moving strings are involved in many engineering devices,
such as serpentine belts, fiber windings, magnetic tapes and thread lines. Much research has been
done to understand the dynamical behaviors of such systems, which has been reviewed by Mote
[1], Wickert and Mote [2], Abrate [3] and Chen and Zu [4]. One major problem is the occurrence
of large transverse vibrations due to tension variation termed as parametric vibrations. However,
the available studies [5–14] on transverse motions of parametrically excited moving strings are
concentrated on equilibrium or periodic vibrations and their stability. The literature that is
specially related to chaotic motion is very limited. To address the lack of research in this aspect,
this paper studies chaotic behavior of a parametrically excited viscoelastic moving string with
geometric non-linearity based on the Galerkin truncation of the equation of motion.
The Galerkin method has been applied to treat the transverse vibrations of parametrically

excited axially moving strings [5–11]. However, only the low order Galerkin truncation is feasible
if longtime non-linear dynamical behaviors (especially the chaotic behavior) of elastic or
viscoelastic mechanisms and structures are concerned. So far there is no direct evidence to prove
the plausibility of the low order Galerkin truncation, although it can be inferred from certain
indirect evidence. The experimental work done by Moon and Holmes for a one-end clamped
elastic beam has indicated that chaotic free-end motion obtained from an analog computer based
on the first order Galerkin truncation is qualitatively consistent with the experimental
measurement [15]. Numerical calculations done by Abhyankar et al. for a non-linear simply
supported beam has shown that the numerical solutions of a partial differential equation and a
differential equation deduced by the first order Galerkin truncation yield similar results [16]. In
addition to the direct comparison with numerical and experimental results, the suitability of the
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Galerkin truncation for research on regular or chaotic motions of non-linear mechanisms and
structures can be approached by comparing the dynamical behaviors of different order truncation
models simplified from the same mathematical model. In the case of viscoelastic columns [17] and
beams [18], the numerical results indicate that the dynamical behaviors of first and second order
Galerkin truncated models are qualitatively the same, but there are certain differences if the
quantitative comparisons are concerned.
In this paper, the first, second, third and fourth order Galerkin truncated systems are,

respectively, deduced from the partial-differential equation that governs the transverse vibrations
of axially moving strings. The dynamics of those truncated systems is numerically compared.
Regular and chaotic motions occur in these systems. The effects of the transport speed, the
periodic perturbation amplitude, and the dynamic viscosity on the dynamical behaviors are
numerically investigated.

2. Equation of motion and its simplifications

Consider that the viscoelastic string moving in the x direction is in a state of uniform initial
stress, and only the transverse vibration in the y direction is taken into consideration. The
material of the string obeys the linear viscoelastic differential constitutive relation. Then the
equation of motion obtained by Newton’s second law for the string is [12]
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where V is the displacement in the transverse direction, r is the mass per unit volume, c is the
axially moving speed of the string, A is the area of cross-section of the string, T is the tension in
the string, and E� is the linear differential operator determined by the viscoelastic property of
string materials. The string is subjected to the non-vibration boundary conditions

V ð0; tÞ ¼ 0; V ðL; tÞ ¼ 0; ð2Þ

where L is the length of the string span. It is assumed that the tension T is characterized as a small
periodic perturbation T1 cosOt on the steady state tension T0: The Kelvin viscoelastic model is
chosen to describe the viscoelastic property of the string material. Thus,

E� ¼ E0 þ Z
@

@t
; ð3Þ

where E0 is the stiffness constant of the string, and Z is the dynamic viscosity of the dashpot.
Eqs. (1) and (2) can be transformed into the non-dimensional form
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Eq. (4) is in the form of a continuous gyroscopic system with non-linear terms and a parameter
excitation term.
The Galerkin method is employed to simplify Eq. (4). Under the boundary condition (5), the

solution of Eq. (4) may be expanded into the following trial function:

vðx; tÞ ¼
Xm

n¼1

qnðtÞsinðnpxÞ; ð7Þ

where the qnðtÞ are generalized displacements, and sinðnpxÞ is the nth eigenfunction of the simply
supported stationary string. Taking the appropriate derivatives and substituting into Eq. (4), one
obtains the residual
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where the derivative is with respect to the dimensionless time t: Application of the Galerkin
method requires that Z 1

0

Rðx; tÞwiðxÞ dx ¼ 0 ði ¼ 1; 2;y;mÞ; ð9Þ

where the weighting functions wiðxÞ are also chosen as the stationary string eigenfunctions

wiðxÞ ¼ sinðipxÞ: ð10Þ
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In the case that m ¼ 4; inserting Eqs. (8) and (10) into Eq. (9) and integrating the resulting
equation yield the simplified equations of motion based on the fourth order Galerkin truncation:
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which contains two gyroscopically coupled linear terms.
Setting q2 ¼ q3 ¼ q4 ¼ 0 in Eq. (11) leads to the simplification based on the first order Galerkin

truncation. Setting q3 ¼ q4 ¼ 0 in Eq. (11) leads to the simplification based on the second order
Galerkin truncation, which contains a gyroscopically coupled linear term. Setting q4 ¼ 0 in
Eq. (11) leads to the simplification based on the third order Galerkin truncation.

3. Bifurcation diagrams of the Poincar!e maps

The Poincar!e map and the bifurcation diagram are the modern techniques used in the analysis
of non-linear systems. The Poincar!e map is a convenient tool to identify the dynamical behavior,
especially chaos. The dynamics may be viewed globally over a range of parameter values, thereby
allowing simultaneous comparison of regular and chaotic motions. The bifurcation diagram
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provides a summary of essential dynamics and is therefore a useful tool for acquiring this
overview. In this research, we check the Poincar!e maps of the non-dimensional displacement of
the center of the moving string, respectively, determined by the first order Galerkin truncated
system

v1ðnT ; 0:5Þ ¼ q1ðnTÞ; ð12Þ

where q1 is numerically integrated from the resulting equation by setting q2 ¼ q3 ¼ q4 ¼ 0 in
Eq. (11), the second order Galerkin truncated system

v2ðnT ; 0:5Þ ¼ q1ðnTÞ; ð13Þ

where q1 is numerically integrated from the resulting equation by setting q3 ¼ q4 ¼ 0 in Eq. (11),
the third order Galerkin truncated system

v3ðnT ; 0:5Þ ¼ q1ðnTÞ � q3ðnTÞ; ð14Þ

where q1 and q3 are numerically integrated from the resulting equation by setting q4 ¼ 0 in
Eq. (11), and the fourth order Galerkin truncated system

v4ðnT ; 0:5Þ ¼ q1ðnTÞ � q3ðnTÞ; ð15Þ

where q1 and q3 are numerically integrated from Eq. (11). In Eqs. (12)–(15), T ¼ 2p=o and n ¼
1; 2; 3;y: The fourth order Runge–Kutta routine is used for numerical integration. The
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Fig. 1. Bifurcation versus the transport speed.
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bifurcation diagrams are presented by varying, respectively, the non-dimensional transport speed
g; the non-dimensional amplitude of the periodic perturbation a; and the non-dimensional
dynamic viscosity EV while the non-dimensional frequency of the periodic perturbation o and the
non-dimensional stiffness of the string are, respectively, kept constant at o ¼ 0:125 and Ee ¼ 400:
At each set of parameters, the first 2000 points of the Poincar!e map are discarded in order to
exclude the transient vibration, and the displacements for the next 50 points are, respectively,
plotted on the bifurcation diagrams. Only the stable motions are considered.
The bifurcation of the first, second, third, and fourth order truncated systems are detected by

examining graphs of the non-dimensional center displacement vi (i ¼ 1; 2; 3; 4) given by Eqs. (12)–
(15) of the string versus g for specific values of the parameters a; EV ; o and Ee: The bifurcation
diagrams for a specific value sets a ¼ 0:9 and EV ¼ 120 are presented in Fig. 1. For g small
enough, the system is asymptotically stable with its response tending to zero. With the increase of
g; the explosive bifurcation occurs. There is a discontinuous increase in the size and form of a
strange attractor, the new enlarged attractor, after the bifurcation, which includes within itself the
phase space regime of the old attractor. If g is increased further, the chaotic motions and the
regular motions alternately appear, and they are alternate more frequently in the second and
fourth order Galerkin truncated systems than those in the first and third order ones.
The bifurcation diagrams in Fig. 2 shows the Poincar!e maps of the non-dimensional center

displacement vi (i ¼ 1; 2; 3; 4) given by Eqs. (12)–(15) against the parameter a for fixed g ¼ 0:5 and
EV ¼ 50: In this case, the system is asymptotically stable with its motion tending to zero for a
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Fig. 2. Bifurcation versus the amplitude of the periodic perturbation.

L.-Q. Chen et al. / Journal of Sound and Vibration 261 (2003) 764–773 769



small enough, and the period-doubling bifurcation and the tangent bifurcation appear before the
explosive bifurcation with the increase of a: However, there are significant differences among the
bifurcation of the first, second, third and fourth order truncated systems, especially between the
first and third order truncated systems and the second and fourth order counterparts.
The bifurcation of the non-dimensional center displacement vi (i ¼ 1; 2; 3; 4), given by

Eqs. (12)–(15), of the string against the non-dimensional dynamic viscosity EV for fixed g ¼ 0:5
and a ¼ 0:9 is shown in Fig. 3. In this case, for EVo25 chaotic motion occurs. With the increase
of EV ; the inverse explosive bifurcation occurs. The strange attractor suddenly disappears. For
EV > 225; the period-2 motion appears in the first and third order truncated systems, and the
period-4 motion appears in the second and fourth order truncated systems. However, the
bifurcation diagrams of first, second, third, and fourth order truncated systems are different for
25oEVo225: There is a fine structure of a cascade of bifurcation in Fig. 3(b), but the structure is
not found in Fig. 3(a), (c) and (d) even if the local magnifications are made.

4. Periodic, quasi-periodic and chaotic vibrations

The bifurcation diagrams manifest that the transverse vibrations of axially moving strings may
be regular or chaotic, depending on the transport speed, the amplitude of the periodic
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Fig. 3. Bifurcation versus the dynamic viscosity.
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perturbation or the dynamic viscosity. Particularly, there exist three types of motion, namely,
periodic, quasi-periodic, and chaotic. Examples of those motions are presented as following, and
the Poincar!e maps are applied to identify the dynamical behaviors. The Poincar!e map of a
periodic motion is depicted in Fig. 4, in which g ¼ 0:5; a ¼ 0:817; o ¼ 0:125; Ee ¼ 400 and EV ¼
50: The Poincar!e map of a quasi-periodic motion is depicted in Fig. 5, in which g ¼ 0:5; a ¼ 0:75;
o ¼ 0:125; Ee ¼ 400 and EV ¼ 50: The Poincar!e map of a chaotic motion is depicted in Fig. 6, in
which g ¼ 0:54; a ¼ 0:9; o ¼ 0:125; Ee ¼ 400 and EV ¼ 120:
It should be remarked that there is qualitative disagreement among the different order Galerkin

truncations. The even order truncations are receivable because the gyroscopic coupling is taken
into consideration.

5. Conclusions

Regular and chaotic vibrations of an axially moving viscoelastic string are investigated in this
paper. The transverse motions of the string are governed by a non-linear partial-differential
equation of motion. The Galerkin method is applied to simplify the equation into first, second,
third, and fourth order truncated systems, respectively, defined by a set of ordinary differential
equations. After the solutions of those differential equations are numerically calculated, the
Poincar!e maps are constructed to classify the vibrations. The bifurcation diagrams are obtained in
the case that the transport speed, the amplitude of the periodic perturbation or the dynamic
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viscosity is, respectively, varied while other parameters are fixed. Examples of periodic, quasi-
periodic, and chaotic vibrations are presented. Unlike the cases of non-linear viscoelastic
structures such as columns [17] and beams [18] previously studied, the dynamical behaviors of the
different order truncated systems may not be the same. To understand fully the non-linear
dynamics of transverse vibrations of an axially moving viscoelastic string, the higher order
truncation and the better trial function are needed, and confirmations through the direct
numerical methods to solve the non-linear partial-differential equation had better been done.
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